Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis.
نویسندگان
چکیده
The T cell inhibitory ligand B7-H1 hinders T cell-mediated virus control, but also ameliorates clinical disease during autoimmune and virus-induced CNS disease. In mice infected with gliatropic demyelinating coronavirus, B7-H1 expression on oligodendroglia delays virus control, but also dampens clinical disease. To define the mechanisms by which B7-H1 alters pathogenic outcome, virus-infected B7-H1-deficient (B7-H1(-/-)) mice were analyzed for altered peripheral and CNS immune responses. B7-H1 deficiency did not affect peripheral T or B cell activation or alter the magnitude or composition of CNS-infiltrating cells. However, higher levels of IFN-γ mRNA in CNS-infiltrating virus-specific CD8 T cells as well as CD4 T cells contributed to elevated IFN-γ protein in the B7-H1(-/-) CNS. Increased effector function at the single-cell level was also evident by elevated granzyme B expression specifically in virus-specific CNS CD8 T cells. Although enhanced T cell activity accelerated virus control, 50% of mice succumbed to infection. Despite enhanced clinical recovery, surviving B7-H1(-/-) mice still harbored persisting viral mRNA, albeit at reduced levels compared with wild-type mice. B7-H1(-/-) mice exhibited extensive loss of axonal integrity, although demyelination, a hallmark of virus-induced tissue damage, was not increased. The results suggest that B7-H1 hinders viral control in B7-H1 expressing glia cells, but does not mediate resistance to CD8 T cell-mediated cytolysis. These data are the first, to our knowledge, to demonstrate that B7-H1-mediated protection from viral-induced immune pathology associated with encephalomyelitis resides in limiting T cell-mediated axonal bystander damage rather than direct elimination of infected myelinating cells.
منابع مشابه
CNS Expression of B7-H1 Regulates Pro-Inflammatory Cytokine Production and Alters Severity of Theiler's Virus-Induced Demyelinating Disease
The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of mu...
متن کاملB7-H1-Deficiency Enhances the Potential of Tolerogenic Dendritic Cells by Activating CD1d-Restricted Type II NKT Cells
BACKGROUND Dendritic cells (DC) can act tolerogenic at a semi-mature stage by induction of protective CD4(+) T cell and NKT cell responses. METHODOLOGY/PRINCIPAL FINDINGS Here we studied the role of the co-inhibitory molecule B7-H1 (PD-L1, CD274) on semi-mature DC that were generated from bone marrow (BM) cells of B7-H1(-/-) mice and applied to the model of Experimental Autoimmune Encephalomy...
متن کاملMicroglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS.
Inflammation of the CNS is usually locally limited to avoid devastating consequences. Critical players involved in this immune regulatory process are the resident immune cells of the brain, the microglia. Interactions between the growing family of B7 costimulatory ligands and their receptors are increasingly recognized as important pathways for costimulation and/or inhibition of immune response...
متن کاملBlockade of PD-1/B7-H1 interaction restores effector CD8+ T cell responses in a hepatitis C virus core murine model.
The impaired function of CD8(+) T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8(+) T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8(+) T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the album...
متن کاملCD4+T cell specific B7-H1 selectively inhibits proliferation of naïve T cells and Th17 differentiation in experimental autoimmune encephalomyelitis
It is widely acknowledged that interleukin 17-producing T helper (Th17) cells are critically participant in the pathogenesis of multiple sclerosis. In the current study, we identified that the expression of CD4+T cells specific co-inhibitory molecule B7-homologue 1(B7-H1) in spleenocytes and mononuclear cells isolated from brains and spinal cord were positive correlated with Th1 and Th17 cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 185 9 شماره
صفحات -
تاریخ انتشار 2010